Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large sinuous rivers are slowing down in a warming Arctic

Abstract

Arctic regions are disproportionately affected by atmospheric warming, with cascading effects on multiple surface processes. Atmospheric warming is destabilizing permafrost, which could weaken riverbanks and in turn increase the lateral mobility of their channels. Here, using timelapse analysis of satellite imagery, we show that the lateral migration of large Arctic sinuous rivers has decreased by about 20% over the last half-century, at a mean rate of 3.7‰ per year. Through a comparison with rivers in non-permafrost regions, we hypothesize that the observed migration slowdown is rooted in a series of indirect effects driven by atmospheric warming, such as bank shrubification and decline in overland flow and seepage discharge along channel banks, linked in turn to permafrost thaw. As lower migration rates directly impact the residence timescales of sediment and organic matter in floodplains, these surprising results may lead to important ramifications for watershed-scale carbon budgets and climate feedbacks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physiographic and hydroclimatic setting of studied rivers.
Fig. 2: Lateral migration rates.
Fig. 3: Conceptual evolution from cold to warming states in large Arctic rivers.

Similar content being viewed by others

Data availability

Hydrologic and meteorological data are accessible through the National Centres for Environmental Information Climate Monitoring (monthly climate reports for monthly mean temperature and precipitation available at https://www.ncei.noaa.gov/access/monitoring/products//#monthly), the United States Geological Survey (USGS) National Water Information System (monthly mean discharge available at https://maps.waterdata.usgs.gov/mapper/index.html) and the Government of Canada Real-Time Hydrometric and Historical Climate Data (monthly mean discharge available at https://wateroffice.ec.gc.ca/map/index_e.html) web portals. Satellite imagery is accessible through the USGS EarthExplorer (Landsat 1 to 8 collections available at https://earthexplorer.usgs.gov/) and GloVis (Landsat 1 to 8 collections available at https://glovis.usgs.gov/app) web portals. Channel bank lines and polygons digitized by the authors for this study are available in Zenodo archives at https://doi.org/10.5281/zenodo.7556050 (ref. 56).

Code availability

Codes used to analyse data are available in a GitHub repository at http://mlt.github.io/QGIS-Processing-tools/tags/dtw.html ref. 61.

References

  1. Gillet, N. et al. Canada’s Changing Climate Report (Government of Canada, 2019).

  2. Bintanja, R. The impact of Arctic warming on increased rainfall. Sci. Rep. 8, 6–11 (2018).

    Article  Google Scholar 

  3. Camill, P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim. Change 68, 135–152 (2005).

    Article  CAS  Google Scholar 

  4. Hollesen, J., Matthiesen, H., Møller, A. B. & Elberling, B. Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nat. Clim. Change 5, 574–578 (2015).

    Article  Google Scholar 

  5. Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).

  6. Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).

    Article  Google Scholar 

  7. Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3, 68–84 (2022).

    Article  Google Scholar 

  8. Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).

    Article  Google Scholar 

  9. Mekonnen, Z. A. et al. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 16, 053001 (2021).

    Article  CAS  Google Scholar 

  10. Shevtsova, I. et al. Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017. Environ. Res. Lett. 15, 085006 (2020).

    Article  Google Scholar 

  11. Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).

    Article  CAS  Google Scholar 

  12. Rowland, J. C. et al. Arctic landscapes in transition: responses to thawing permafrost. Eos 91, 229–230 (2010).

    Article  Google Scholar 

  13. Walcker, R., Corenblit, D., Julien, F., Martinez, J. M. & Steiger, J. Contribution of meandering rivers to natural carbon fluxes: evidence from the Ucayali River, Peruvian Amazonia. Sci. Total Environ. 776, 146056 (2021).

    Article  CAS  Google Scholar 

  14. Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711–730 (2017).

    Article  Google Scholar 

  15. Allen, J. R. Sedimentary structures: their character and physical basis. Dev. Sedimentol. 30B, 1–593 (1982).

    Google Scholar 

  16. Howard, A. D. & Knutson, T. R. Sufficient conditions for river meandering: a simulation approach. Water Resour. Res. 20, 1659–1667 (1984).

    Article  Google Scholar 

  17. Chassiot, L., Lajeunesse, P. & Bernier, J. F. Riverbank erosion in cold environments: review and outlook. Earth-Sci. Rev. 207, 103231 (2020).

    Article  Google Scholar 

  18. Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

    Article  CAS  Google Scholar 

  19. Horton, A. J. et al. Modification of river meandering by tropical deforestation. Geology 45, 511–514 (2017).

    Article  Google Scholar 

  20. Ielpi, A. & Lapôtre, M. G. A. A tenfold slowdown in river meander migration driven by plant life. Nat. Geosci. 13, 82–86 (2020).

    Article  CAS  Google Scholar 

  21. Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).

    Article  Google Scholar 

  22. Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851(2022).

  23. Brown, D. R. N. et al. Implications of climate variability and changing seasonal hydrology for subarctic riverbank erosion. Clim. Change 162, 385–404 (2020).

    Article  Google Scholar 

  24. Gautier, E. et al. Fifty-year dynamics of the Lena River islands (Russia): spatio-temporal pattern of large periglacial anabranching river and influence of climate change. Sci. Total Environ. 783, 147020 (2021).

    Article  CAS  Google Scholar 

  25. Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, e2020JF005706 (2021).

  26. Matsubara, Y. et al. Geomorphology river meandering on Earth and Mars: a comparative study of Aeolis Dorsa meanders, Mars and possible terrestrial analogs of the Usuktuk River, AK, and the Quinn River, NV. Geomorphology 240, 102–120 (2015).

    Article  Google Scholar 

  27. Lininger, K. B. & Wohl, E. Floodplain dynamics in North American permafrost regions under a warming climate and implications for organic carbon stocks: a review and synthesis. Earth-Sci. Rev. 193, 24–44 (2019).

    Article  CAS  Google Scholar 

  28. Treat, C. C. & Jones, M. C. Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years. Holocene 28, 998–1010 (2018).

    Article  Google Scholar 

  29. Lapôtre, M. G. A., Ielpi, A., Lamb, M. P., Williams, R. M. E. & Knoll, A. H. Model for the formation of single-thread rivers in barren landscapes and implications for pre-Silurian and martian fluvial deposits. J. Geophys. Res. Earth Surf. 124, 2757–2777 (2019).

    Article  Google Scholar 

  30. Wang, G., Hu, H. & Li, T. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J. Hydrol. 375, 438–449 (2009).

    Article  Google Scholar 

  31. Tananaev, N. & Lotsari, E. Defrosting northern catchments: fluvial effects of permafrost degradation. Earth-Sci. Rev. 228, 103996 (2022).

    Article  Google Scholar 

  32. Tarnocai, C., Nixon, M. F. & Kutny, L. Circumpolar-active-layer-monitoring (CALM) sites in the Mackenzie Valley, northwestern Canada. Permafr. Periglac. Process. 15, 141–153 (2004).

    Article  Google Scholar 

  33. Nguyen, T.-N., Burn, C. R., King, D. J. & Smith, S. L. Estimating the extent of near-surface permafrost using remote sensing, Mackenzie Delta, Northwest Territories. Permafr. Periglac. Process. 20, 141–153 (2009).

    Article  Google Scholar 

  34. Stephani, E., Drage, J., Miller, D., Jones, B. M. & Kanevskiy, M. Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska. Permafr. Periglac. Process. 31, 239–254 (2020).

    Article  Google Scholar 

  35. Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost—a review. Vadose Zo. J. 15, vzj2016.01.0010 (2016).

    Article  Google Scholar 

  36. Leopold, L. B., Wolman, M. G. & Miller, J. P. Fluvial Processes in Geomorphology (Dover, 1964).

  37. Sylvester, Z., Durkin, P. & Covault, J. A. High curvatures drive river meandering. Geology 47, 263–266 (2019).

    Article  Google Scholar 

  38. Lageweg, W. I. van de et al. Bank pull or bar push: what drives scroll-bar formation in meandering rivers? Geology 42, 319–322 (2014).

  39. Liljedahl, A. K., Timling, I., Frost, G. V. & Daanen, R. P. Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow. Commun. Earth Environ. 1, 50 (2020).

    Article  Google Scholar 

  40. Parker, G. et al. A new framework for modeling the migration of meandering rivers. Earth Surf. Process. Landf. 36, 70–86 (2011).

    Article  Google Scholar 

  41. Blanckaert, K. Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends. Water Resour. Res. 46, W09506 (2010).

    Google Scholar 

  42. Ielpi, A. & Lapôtre, M. G. A. Biotic forcing militates against river meandering in the modern Bonneville Basin of Utah. Sedimentology 66, 1896–1929 (2019).

    Article  Google Scholar 

  43. Fox, G. A. et al. Measuring streambank erosion due to ground water seepage: correlation to bank pore water pressure, precipitation and stream stage. Earth Surf. Process. Landf. 1573, 1558–1573 (2007).

    Article  Google Scholar 

  44. O’Neill, H. B., Smith, S. L. & Duchesne, C. Long-term permafrost degradation and thermokarst subsidence in the Mackenzie Delta Area indicated by thaw tube measurements. In 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference (eds Bilodeau, J.-P. et al.) 643–651 (ASCE, 2019).

  45. Qiu, J. Thawing permafrost reduces river runoff. Nature https://doi.org/10.1038/nature.2012.9749 (2012).

  46. Zheng, L., Overeem, I., Wang, K. & Clow, G. D. Changing Arctic river dynamics cause localized permafrost thaw. J. Geophys. Res. Earth Surf. 124, 2324–2344 (2019).

    Article  Google Scholar 

  47. Jorgenson, M. T. et al. An Ecological Land Survey for the Colville River Delta, Alaska, 1996 (ABR, Inc., 1997).

  48. Park, H., Yoshikawa, Y., Yang, D. & Oshima, K. Warming water in arctic terrestrial rivers under climate change. J. Hydrometeorol. 18, 1983–1995 (2017).

    Article  Google Scholar 

  49. Roy-Leveillee, P. & Burn, C. R. Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon. J. Geophys. Res. Earth Surf. 122, 1070–1089 (2017).

    Article  Google Scholar 

  50. Langer, M. et al. Rapid degradation of permafrost underneath waterbodies in tundra landscapes—toward a representation of thermokarst in land surface models. J. Geophys. Res. Earth Surf. 121, 2446–2470 (2016).

    Article  Google Scholar 

  51. O’Neill, H. B., Roy-Leveillee, P., Lebedeva, L. & Ling, F. Recent advances (2010–2019) in the study of taliks. Permafr. Periglac. Process. 31, 346–357 (2020).

    Article  Google Scholar 

  52. French, H. The Periglacial Environment (Wiley, 2017).

  53. Prowse, T. D. River-ice ecology. I: Hydrologic, geomorphic, and water-quality aspects. J. Cold Reg. Eng. 15, 1–16 (2001).

    Article  CAS  Google Scholar 

  54. Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).

    Article  CAS  Google Scholar 

  55. Brown, J., Ferrians, O. J. Jr, Heginbottom, J. A. & Melkinov, E. S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions (USGS, 1997); https://pubs.usgs.gov/cp/45/report.pdf

  56. Ielpi, A., Lapotre, M. G. A., Finotello, A. & Roy-Léveillée, P. Large sinuous rivers are slowing down in a warming Arctic. Zenodo https://doi.org/10.5281/zenodo.7556050 (2023).

  57. Leopold, L. B. & Maddock, T. J. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications (USGS, 1953).

  58. Giorgino, T. Computing and visualizing dynamic time warping alignments in R: the dtw package. J. Stat. Softw. 31, 1–24 (2009).

    Article  Google Scholar 

  59. Donovan, M., Belmont, P. & Sylvester, Z. Evaluating the relationship between meander-bend curvature, sediment supply, and migration rates. J. Geophys. Res. Earth Surf. 126, e2020JF006058 (2021).

    Article  Google Scholar 

  60. Sylvester, Z., Durkin, P. R., Hubbard, S. M. & Mohrig, D. Autogenic translation and counter point bar deposition in meandering rivers. GSA Bull. 133, 2439–2456 (2021).

  61. Titov, M. Code for dynamic time warping analysis. GitHub http://mlt.github.io/QGIS-Processing-tools/tags/dtw.html (2015).

  62. Finotello, A., D’Alpaos, A., Lazarus, E. D. & Lanzoni, S. High curvatures drive river meandering: COMMENT. Geology 47, e485 (2019).

  63. Finotello, A. et al. American Geophysical Union, Fall Meeting Abstracts (AGU, 2020).

  64. Congedo, L. Semi-automatic classification plugin: a Python tool for the download and processing of remote sensing images in QGIS. J. Open Source Softw. 6, 3172 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

A.I. and P.R.-L. are supported by Discovery grants (RGPIN-2016-5720 and RGPIN-2022-05077, respectively) from the Natural Sciences and Engineering Resource Council of Canada. P.R.-L. is also supported by the Sentinel North program of Université Laval, funded by the Canada First Research Excellence Fund.

Author information

Authors and Affiliations

Authors

Contributions

A.I. conceived the study, its methodology, visualization and original drafting of the text, figures and tables. A.I., M.G.A.L., A.F. and P.R.-L. jointly developed the data analysis, writing and reviewing of following drafts.

Corresponding author

Correspondence to Alessandro Ielpi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Migration time-series analysis, curvature analysis, shrub-front advance, Supplementary references, Figs. 1–5, Tables 1–4 and Data 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ielpi, A., Lapôtre, M.G.A., Finotello, A. et al. Large sinuous rivers are slowing down in a warming Arctic. Nat. Clim. Chang. 13, 375–381 (2023). https://doi.org/10.1038/s41558-023-01620-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01620-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing